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4 rotating-phase autonomous system with a deviating argument is investigated. A scheme
of successive approximations for the exact solution over an infinite time interval is con~
structed ; sufficient conditions for the existence of a steadystate solution are derived,
Such systems occur frequently in the theory of nonlinear vibrational-rotational motions
in systems whose parameters vary within a narrow range,

Let us construct the stationary, i. e, steadystate, solutions of a real system of the form

dE [dt —=ef (E, E_, ¥, P &) (B, =E ({t—1)}
dYfdt=w(E, E.)+eF(E E., ¥, ¥, €) (P =0(—1) (1)

Hete ¢ & (— oo, oo) is the time, & = [— &, &] a small parameter, £ a vector vari-
able whose values lie in some neighborhood of the point Ey*, ¥ € (— oo, o) the scalar
phase, and © & (— oo, o0} a constant,

We can construct the solution by the method of successive approximations [1], making
use of the fact that if system (1) has a solution E (8), ¥ {t} for all ¢ ,thenitalsohasa
family of solutions E (¢ -+ 8), ¥ (¢ + 6), where 8 is an arbitrary constant, The value
of the phase ¥ can therefore be chosen arbitrarily for some instant £, . For example,
we can set it equal to zero in order to simplify our expressions, To avoid secular terms
in system (1) we introduce the new independent variable s such that

t— to = s {1 + eh), T ==@ (1 -+ eh)
This yields the system
dE [ ds = & (1 + &h) f(E, E, P, ¥, 8)
dyp [ ds = (1 + eh) [0 (E, Eq,) + eF (B, E 0P, VP, e)]

where & is some constant which we choose in such a way that the solution of the per-
turbed system in s has the "unperturbed” period 7.

Assuming that the functions f, © have partial derivatives with respect to all their argu~
ments and that these derivatives together with £ satisfy the Lipschitz condition in the
above domain, we make the substitutions

E=E,+ ex, = s+ 0 gy {E,, 8 = const)
to obtain the system
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i of af 3
_Jj_ = f (Eo, Eo, @8, 0o (3 — ), 0)+¢ [h.fo + (5%),, z+ <ﬁ;)o %ot (Ff\s?)oy +
3 F
+ (OT{‘)O!I@ + (—a{:—)o + f. (Ss (P: h, z, w(p’ Y y‘P’ 8)] (2)

d dw o0
—zi—i!"zhw(E"' Eo)+<ﬁ)o”+(ﬁ> To+ Fo+F* (s, §, b, @, 2, ¥, Y, £)

®/0
Ty == 21/ @ (E,, Ey)
Here z, y are unknown periodic functions of : of period 7, ; f# F *are unknown func-
tions which vanish identically for & = 0. The zeroth approximations of the functions =,
¥ can be obtained from system (2) by setting ¢ =  and ensuring that y = 0 for s = 0.

Hence, s
29 {s) = a9 - S fodsy = ag -+ 2" (5) (7o = const)

0 8
@)= [how -+ (3, 0+ (3, o]+ + § () " @0+ (3, = (1= 9+ Fo|

The vector function , is periodic if
To

R(Ew @)= S f (Eo, Eo, 08, 0o (s — Q), 0y ds =Tg(fe>=0 3

0 J—
and the resulting nonlinear system of equations is the defining system for the vector ;.
Let Eg* = E, (@) be a root of this system (3) which belongs to the permissible domain,
Similarly, the function ¥, is periodic if we set

%o
0] o

1 //de . 7o) . N ({)‘g) O
ho=—"g \(51?)0‘”“ +(@;)O”o«> + FO/—[ 3E), +\3E,
The periodic function y, is therefore defined completely, while z, is defined only to
within the constant vector a,.

The first approximation system is (2) in which the functions /* and #* have been set
equal to zero, On substituting the zeroth approximation into the equations for z; we

obtaingc1 (5) = a1+ 2" () + & [hozo' + f((%)o o+ (%{%)0) agdsy E‘fx (51, ) al.n]
b O

This 'mpli(:: ;(% )" o (‘%;)o oo+ (%)0 wo+ (%;)o Yoo + (%Qo)
1

(aR } an*) g == = To (fl)
This system of linear equations in the vector a, is uniquely solvable if det (8R/Ey*)+0
We are assuming that this is, in fact, the case, Further, the expression

do ) ]
yl(s)z[hmo-{- (’3? 0a1+<6E’q, ()al s+
3
(0] on .
0
1 o0 o\ &
m=— e —(Gg), + (a) o

) oo .
(Fl (S, Q, ho, 8) = (éE)O " + (ﬁ)o xl‘P + Fy + F&->
@,
The subsequent approximations are obtainable from the general scheme

implies that
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F=pote[hyfot (55 ) 2 +(aab{) Pt

(aa@ Yt (aax;{ ) Yirt, 0 (gg{)e +1 £~l] )
dy

3‘ el —— *
Y —hiont (g8 + (G, o Fot Py (32

Substituting the functions z; and ¥, into the vector equation for ,, we obtain a for~
mula similar to (4).

T2 (s) = az + %°* (s) - & [hb"«‘o +S<( > a1+<6E> ﬂr!“fz)d‘“l]

(26,9 )= (75 ), = +(£§) o+ (3o + (), o+

a
+ (%)0 +1° s 9 hy, w1, Ty YU Y10 £) (/2 35.:0: fl)

Thus, the vector equation in a, obtainable from the periodicity condition for z, has a
real root a, (¢, e) for sufficiently small & The second-approximation system therefore
yields the complete first approximation of the vector function z and the second appro-
ximation for y. It can be shown by induction on the basis of the implicit function theo-
rem that system (5) enables us to find any approximation in powers of £ of functions z,

h {where k = H(p, &)) periodic in s. ¢, Solving the equation

h=H(t{ -+ ¢h), (h =k (1, &) 6)
for » , we obtain explicit expressions for the required unknowns,
E(t, 7, 8) = Eo () + &z (s, 9, €), V(¢ T, &) = o (Eo(@), Ee(p))s + &y (559, &)

(s=(—t) 1+ er(t,e)]?, 9= 11+ eh(x, 8]
We can construct the solution of Eq, (6) by successive approximations according to the
scheme m=HEA+ ey, 8) (G >1, hy=H(,0)

Many autonomous probiems of the theory of nonlinear vibrational-rotational motions
are reducible to systems of the type (1), We refer, specifically, to systems with one degree
of freedom whose parameters vary within a narrow range, to the autonomous analog of
the system investigated in [2], et al, The proposed small-parameter method [1] is a more
direct way of dealing with systems with a deviating argument and has certain other ad-
vantages over the averaging schemes of [3], where ¢t ~ 1/ e.
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